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ABSTRACT. Recent observations and climate change projections indicate that changes in rainfall characteristics, which 

determine the erosive power of rainfall, will amplify erosion rates around the world. However, the magnitude and scope of 

these future changes in erosive power of rainfall remain largely unknown, particularly at finer-resolutions and local scales. 

Due to a lack of available projected future sub-hourly climate data, previous studies relied on aggregates (hourly, daily) 

rainfall data. This study calculated erosivity for the southeastern United States using the RUSLE2 erosivity calculation 

method without data limitation and a recently published 15-minute precipitation dataset. This precipitation data was derived 

from five NA-CORDEX climate models’ precipitation products under the Representative Concentration Pathway (RCP) 8.5 

scenario. These hourly precipitation datasets were bias-corrected and temporally downscaled to 15-minute resolution for 

187 locations with collocated 15-minute precipitation observations. Precipitation, erosivity (R-factor), and erosivity density 

(ED) estimations were provided for historical (1970-1999) and future (2030-2059) time periods. Ensemble results for 

projected values (as compared to historical values) showed increase in precipitation, erosivity, and erosivity density by 14%, 

47%, and 29%, respectively. The future ensemble model showed an average annual R-factor of 11237±1299 MJ mm ha-1 h-

1 yr-1. These findings suggest that changes in rainfall intensity, rather than precipitation amount, may be driving the change 

in erosivity. However, the bias correction and downscaling limitations inherent with original precipitation dataset and this 

study's analyses obscured this particular result. This study offers a novel examination of projected future precipitation 

characteristics in terms of erosivity and potential future erosion.   
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Introduction 

According to the United Nations Food and Agriculture Organization, soil erosion has been reported as one of the greatest 

challenges for sustainable soil management (FAO et al., 2019; Grillakis et al., 2020). Soil erosion has a severe impact on the 

land productivity, water bodies, and socioeconomics of a region (Almagro et al., 2017; Biasutti and Seager, 2015). During 

soil erosion events, nutrients and organic matter are carried away through runoff which reduces soil fertility, effective root 

depth, and negatively impacts water quality by increasing turbidity of surface waters (Biasutti and Seager, 2015; Segura et 

al., 2014). Globally, soil erosion has reduced both cropland area and crop yield at rates of 10 million ha (Grillakis et al., 

2020; Pimentel, 2006) and 0.4% every year, respectively (FAO et al., 2019), resulting in an annual economic loss of $400 

billion (Borrelli et al., 2017). 

Among various drivers causing soil erosion (i.e., water, wind, change in land use, and cultivation practices) (Borrelli et 

al., 2017; Naipal et al., 2018; Webb et al., 2017), water is considered the primary natural cause of soil erosion through both 

rainfall and runoff processes (Cerdà et al., 2009). The potential of rainfall to erode soil or rainfall erosivity is a function of 

both rainfall kinetic energy and maximum 30-min rainfall intensity (McGehee and Srivastava, 2018; Renard, 1997; 

Wischmeier and Smith, 1978, 1965, 1958). Characteristics of rainfall mostly responsible for changes in erosivity include 

energy, intensity, frequency, and duration (McGehee, 2016; McGehee and Srivastava, 2018). Climate change is projected to 

alter the rainfall characteristics due to increases in atmospheric specific humidity, warmer climate, and seasonal rainfall 

(Konapala et al., 2020; Panagos et al., 2022). This will likely increase the extreme rainfall events and may act as one of the 

main drivers for increasing land degradation, loss of agricultural productivity, as well as soil erosion (Borrelli et al., 2021). 

The effects of climate change on extreme precipitation events (greater than 50.8 mm in a day) in the United States have 

been observed since 1910 (Karl et al., 1996; Pruski and Nearing, 2002). The frequency of extreme precipitation events has 

increased more than the average number of events in the last three decades. In a similar way, the Southeast United States 

has also recorded historically the highest number of daily extreme rainfalls with 76.2 mm or more during the decadal periods 

of the 1990s, 2000s, and 2010s, with 1st, 3rd, and 2nd highest number of rainfall events, respectively (USGCRP, 2018). 

Extreme events have increased during these time periods of the 1990s, 2000s, and 2010 by 23%, 16%, and 20%, respectively, 

compared to the estimated average of 0.95 days per year in the 1900s. 

According to the Intergovernmental Panel on Climate Change (IPCC, 2018), temperature at the end of 2052 is likely to 

increase by 1.5oC from pre-industrial levels with the current rate of greenhouse gas emission. This will affect the 

precipitation characteristics; for instance, intensity is expected to increase up to 7% for each 1oC increase in temperature 

(Easterling et al., 2017). Precipitation in the Southeast United States is anticipated to increase in all seasons except summer. 

The decrease in precipitation in summer could be as high as 15% in parts of Arkansas, Louisiana, and South Florida (Ingram 

et al., 2013; Keim et al., 2011). Therefore, climate change will affect future precipitation characteristics, thereby increasing 

the complexity of precipitation patterns of intensity, amount, duration and frequency (Almagro et al., 2017; Pruski and 

Nearing, 2002; Seager et al., 2009).   

Rainfall erosivity of the Southeast United States may be more susceptible to climate change than other parts of the country 

owing to the extensive range of erosivity (2,000 to more than 10,000 MJ mm ha-1h-1yr-1) and high intensities in lower 

latitudes (Kunkel et al., 2013; McGehee, 2016; McGehee and Srivastava, 2018; Trenberth et al., 2003). Therefore, 

quantifying projected changes in rainfall erosivity for the southeastern US will be key for strategic identification of regions 

prone to soil erosion. 

The estimation of erosivity can be categorized mainly in two approaches based on the temporal scale of rainfall data i.e., 

i) high resolution rainfall data and ii) aggregated (hourly, daily or monthly) rainfall data (Fischer et al., 2018; McGehee, 
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2016; McGehee and Srivastava, 2018; McGehee et al., 2022). Previous erosion maps, especially those of three Agricultural 

Handbooks (AH) i.e., AH282 (Wischmeier and Smith, 1965), AH537 (Wischmeier and Smith, 1978) and AH703 (Renard, 

1997), were found to be about 30% lower than the same erosivity values from benchmarking studies (McGehee, 2016; 

McGehee and Srivastava, 2018; McGregor et al., 1995). Considering the discrepancies, McGehee (2016) recommended a 

better procedure for generating erosivity maps from 15-minute data, which was more consistent with breakpoint precipitation 

observations from McGregor et al. (1995) and the original erosivity work by Wischmeier and Smith (1958). The term 

“breakpoint” data refer to precipitation data that are measured using “breaks” in rainfall characteristics such as intensity. 

This should not be confused with “breakpoint format” data, which could be derived from any precipitation measurements 

and represented with “breaks” that do not necessarily preserve precipitation characteristics. So, breakpoint data rainfall 

characteristics are preserved within the level of gauge’s accuracy and precision (McGehee et al., 2021). McGehee and 

Srivastava (2018) used non-breakpoint, 15-minute precipitation data to estimate rainfall erosivity (R-factor) in the Southeast 

US for the period 1970-2013. They validated their approach using breakpoint data from McGregor et al. (1995) after making 

proper adjustments or corrections to account for differences between the two data types. Therefore, with proper accounting, 

it is possible to approximate breakpoint erosivity using 15-minute, fixed-interval precipitation data.  

It is important to determine how future erosivity values may change in response to climate change. There have been 

numerous previous works on the estimation of rainfall erosivity around the world (Almagro et al., 2017; Ballabio et al., 

2017; Beguería et al., 2018; Bonilla and Vidal, 2011; Grillakis et al., 2020; Meusburger et al., 2012; Mondal et al., 2016; 

Nyssen et al., 2005; Panagos et al., 2022; Riquetti et al., 2020; Shiono et al., 2013; Zhang et al., 2010). However, to our 

knowledge, only a few have studied projected erosivity in the United States (Biasutti and Seager, 2015; Hoomehr et al., 

2016; Nearing, 2001; Panagos et al., 2022; Segura et al., 2014). Nearing (2001) used the erosivity method developed by 

Renard and Freimund (1994) that relies upon both monthly rainfall and annual rainfall amounts from two coupled 

atmospheric ocean Global Circulation Model (GCM). Biasutti and Seager (2015) used a statistical relationship between 

daily precipitation and rainfall erosivity. The relationship between 20 years (1981-2000) of observed precipitation and 

erosivity was developed and subsequently applied for future scenarios at both daily and monthly time scales. Hoomehr et 

al. (2016) investigated the future daily rainfall erosivity for 2010-2099 under three climate scenarios (A1F1, A1B, and B1) 

using monthly precipitation for the southern Appalachian region of the US. Panagos et al. (2022) used a regression model 

known as Gaussian Process Regression for the estimation of projected rainfall erosivity around the globe for 2041-2060 and 

2061-2080. The model used a relationship between the rainfall erosivity and monthly climatic variables of average rainfall 

depth,  maxima and minima of temperature, and 19 bioclimatic variables from WorldClim (Fick and Hijmans, 2017; Panagos 

et al., 2017).The prior studies’ results were based on aggregated precipitation data (e.g., daily, monthly precipitation) or 

statistical relationships, and therefore, they obscure the effects of rainfall intensity, especially smoothing of intensity, which 

are critical for erosivity calculation (Fischer et al., 2018; Flanagan et al., 2020; Hollinger et al., 2002; McGehee et al., 2022). 

To-date, studies of erosivity derived from projected precipitation data have been limited by a lack of projected sub-hourly 

precipitation data comparable to the breakpoint precipitation data used in its original discovery (Wischmeier and Smith, 

1958). Recent research has tentatively confirmed that fixed-interval data of about 5-minute resolution is roughly equivalent 

to breakpoint data in the few locations those data products have been compared (Flanagan et al., 2020; Hollinger et al., 

2002). The equivalent fixed-interval resolution could be slightly different for other locations. The single greatest limiting 

factor in studies of future erosivity is the resolution of even dynamically-downscaled climate data from GCM- Regional 

Circulation Models (RCM), which is currently available at hourly resolutions. Takhellambam et al. (2022) further 

downscaled hourly climate projection data to 15-minute resolution for several climate models at 187 locations with matching 
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observed data over the Southeast United States. Though this data is subject to underestimation biases for erosivity 

(Takhellambam et al., 2022), it is still one of the best options presently available for an analysis of future erosivity. Therefore, 

the objective of our study is to estimate the future (2030-59) rainfall erosivity using temporally downscaled 15-min rainfall 

datasets over the Southeast Unites States. Moreover, the projected future values will be compared to historical (1970-1999) 

values and historical values to observed values to inform the interpretation of the results.  

Material and Methods 

 Precipitation data from observed station data and GCM-RCM historical and projected future simulations were acquired 

and pre-processed for subsequent erosivity calculations and comparisons. Relevant procedures for acquiring and pre-

processing the original precipitation data and for calculating erosivity and erosivity density values are provided below. 

Data and Study area  

The area of interest for this study includes southeastern states of Alabama, Arkansas, Florida, Georgia, Kentucky, 

Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia (Fig. 1). The region receives annual rainfall 

of 1000-1250 mm on average in inland areas and can receive up to 1500 mm near the coastline, which are both above the 

average annual rainfall for the contiguous US of 856 mm (Ingram et al., 2013; Kumar et al., 2022a, 2022b, 2021). A warming 

climate is likely to bring more frequent extreme climates (Allan and Soden, 2008; Easterling et al., 2017). In addition, higher 

frequencies of rainfall intensities, especially in the lower altitudes are observed due to disproportionate moisture 

convergence. Moreover, the Gulf of Mexico and the Atlantic Ocean play a key role in distinguishing this region’s climate 

from rest of the country (Ingram et al., 2013; Kunkel et al., 2013).  

 

Figure 1. Map showing the spatial distribution of observed (1970-2013) average annual precipitation with 187 precipitation stations over the 

southeastern United States. 

 

NA-CORDEX coverage included all of North America for the historical and future periods of 1970-1999 and 2030-2059, 

respectively. GCM simulations were forced with Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5 

scenario. Other scenarios (RCP2.5 and RCP4.5) were not downscaled to an hourly resolution. The original CMIP5 GCM 

outputs were downscaled via the NA-CORDEX to approximate temporal and spatial scales of 1-hour and 50-km, 
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respectively (Mearns et al., 2017; Scinocca et al., 2016). It should be noted that recent studies have reported that the CMIP 

Phase 6 (CMIP6) is an updated climate projection based on scenarios premises of CMIP5 and used socioeconomic pathways 

(van Vuuren and Riahi, 2011). The projections of CMIP5 are based on the radiative forcing values of four greenhouse gas 

concentration pathways of 2100 (Kamruzzaman et al., 2021; O’Neal et al., 2005). Chen et al., (2020) found that overall 

CMIP6 performed better than CMIP5 in simulating climate extremes of precipitation, especially with very heavy 

precipitation days (R20mm), maximum consecutive-5-day precipitation (RX5day), and consecutive dry days (CDD). 

Further, the uncertainty in CDD using the interquartile range (IQR) of CMIP6 was found to be smaller than CMIP5 (Li et 

al., 2021). Similarly, Li et al. (2021) found the uncertainty analysis for both annual total precipitation (PRCPTOT) and 

annual total precipitation with daily precipitation above 95th percentile (R95pTOT) of CMIP6 are found greater than that of 

CMIP5. In addition, Martel et al. (2022) found that CMIP6 has a narrow band of uncertainty with future climate projections, 

especially over North America. Overall, CMIP6 has better projection of future climate scenarios than CMIP5 (Chen et al., 

2020). However, we are not considering CMIP6 in this study as CMIP6 has a coarser temporal resolution with the highest 

resolution of 1-hour. We used recently developed 15-min rainfall which is downscaled from CMIP5 archive of NA-

CORDEX as hourly rainfall datasets smoothed the rainfall intensities, resulting in an underestimation of erosivity (McGehee, 

2016; McGehee and Srivastava, 2018; Takhellambam et al., 2022). However, future studies can use CMIP6 after the data 

has been appropriately downscaled. 

Table 1. Climate models used in this study. 

Acronym GCM RCM References 

CANESM2_CANRCM4 Canadian Earth System Model Canadian Regional Climate Model 

version 4 

Scinocca et al., 

2016 
HadGEM2-ES.WRF Hadley Centre Global Environment Model  

version 2 Earth system model 

Weather Research and Forecasting Skamarock et al. 

2005 

GFDL-ESM2M.WRF Earth System Model – Geophysical Fluid Dynamics 
Laboratory 

Weather Research and Forecasting Skamarock et al., 
2005 

MPI-ESM-LR. RegCM4 Max Planck Institute for Meteorology Earth System  

Model LR 

Regional Climate Model version 4 Giorgi and 

Anyah, 2012 
MPI-ESM-LR.WRF Max Planck Institute for Meteorology Earth System  

Model LR 

Weather Research and Forecasting Skamarock et al., 

2005 

Erosivity and Erosivity Density Calculations 

 This study utilized WEPPCLIFF version 1.6 (McGehee et al., 2020) to perform erosivity calculations based on its 

Agricultural Research Service (ARS) energy equation option. This option returns results for all six of the major ARS 

erosivity and accompanying kinetic energy calculations (Table 2). Options include AH282, AH537, AH703, MM (McGregor 

and Mutchler, 1976), BF (Brown and Foster, 1987), and R2 (USDA-ARS, 2013, 2008). R2 is shorthand for RUSLE2. 

Therefore, this study computed six erosivity results for all GCM-RCM products and observed stations. Only the results 

based on the RUSLE2 energy equation were reported in this manuscript since that is the most popular rainfall erosivity in 

the United States currently. Although the RUSLE2 energy equation was used to calculate erosivity (equation 1-3), not all 

RUSLE2 rules were applied due to concerns raised in McGehee et al. (2022, 2021) over the omission of some storms, where 

‘storm’ is defined as a continuous sequence of precipitation, separated by 6 hours or more with less than 1.27 mm of 

precipitation (Wischmeier and Smith, 1978). More specifically, small storms were not omitted and storms of return period 

greater than 50-years were not omitted from the analysis. The prior references provide strong cases for decisions to retain 

all storms in various erosivity analyses if one requires more information. Similar to McGehee and Srivastava (2018), all 

precipitation was assumed to be rainfall in both observed and modeled climate data. Snowfall amounts in particular should 

not be used to calculate erosivity, and snowfall should be removed from analyses of rainfall erosivity elsewhere in the United 

States (McGehee et al., 2022). However, snowfall is uncommon in the vast majority of the Southeast US, and it is projected 

to become rarer in the future. Therefore, this assumption would have negligible effects on results of this study. 
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R (MJ mm ha−1h−1yr−1) =
1

n
∑ [∑(𝐸𝑠)𝑘

𝑚

𝑘=1

]

n

j=1

 (1) 

where R is rainfall erosivity also known as R-factor (MJ mm ha−1h−1yr−1); n is number of years; m is number of storms in 

each year; j and k are index of number of years and storms in each year, respectively, and Es is storm erosivity (equation 2).  

 

Table 2. The most used six rainfall kinetic energy equations. Units are in kinetic per unit volume of rain in MJ mm -1 ha-1, and i is the rainfall 

intensity in mmh-1. 

Sl. No Name of rainfall Kinetic energy Energy Equation 

1 Agricultural Handbook No. 282 (AH282)  eAH282  = 0.119 + 0.0873 𝑙𝑜𝑔10(𝑖) 

2 Agricultural Handbook No. 537 (AH537) *   eAH537  = 0.119 + 0.0873𝑙𝑜𝑔10(𝑖) 

3 Agricultural Handbook No. 703 (AH703) * eAH703  = 0.119 + 0.0873 𝑙𝑜𝑔10(𝑖) 

4 McGregor and Mutchler (MM) eMM  = 0.273 + 0.2168𝑒(−0.048𝑖) − 0.4126𝑒(−0.072𝑖) 

5 Brown and Foster (BF) eBF  = 0.29(1 − 0.72 𝑒(−0.05𝑖)) 

6 Revised Universal Soil Loss Equation version 2 (RUSLE2 or R2) eR2  = 0.29 ∗ (1 − 0.72 𝑒(−0.082𝑖)) 

*Both AH537 and AH703 have kinetic energy limits imposed at 76 mm h-1 and AH537 has a 30-minute maximum intensity 

limit imposed at 64 mm h-1.  

Es (MJ mm ha−1h−1) = (∑ e. P

p

t=1

) . I30    (2) 

where e is the rainfall kinetic energy per unit depth (equation 3); t is single time interval; p is number of time segments in 

the event; P is rainfall depth (mm); and  I30 is maximum 30-minute rainfall intensity. 

e (MJ ha−1mm−1) = 0.119 + 0.0873 ∗ log10(I)                (3) 

where, I is rainfall intensity (mm/h). 

Erosivity density (ED) calculations were not supported by WEPPCLIFF at the time this study was conducted. To obtain 

erosivity density values, the storm data export option in WEPPCLIFF was used, and erosivity densities were calculated from 

the resulting storm R and precipitation values. The same procedure used by Kinnell (2010) was used for these calculations. 

as provided in equation (4).  

EDj (MJ ha−1h−1) =
Rj

Pj

 (4) 

where, R and P are annual rainfall erosivity and precipitation depth (mm), respectively, for jth year. 

Erosivity density provides both erosivity pattern as well as precipitation type for erosive events. For instance, high 

erosivity density resulted from a high intensity rainfall event of short duration (Zhu et al., 2021). ED are typically favored 

in cases with shorter station record lengths, excessive data gaps, no locally measured precipitation characteristics, or more 

generally when the variability of erosivity presents a challenge. On the other hand, the standard approach, in which all 

precipitation data is used for erosivity calculation and no extrapolation relationship is necessary, may offer more insight into 

more subtle patterns of erosivity. This is the same approach used in the original Wischmeier and Smith (1958) discovery and 

underlying theory, which were established using breakpoint precipitation data. Unfortunately, some inconsistent application 

of that theory and other erosivity practices have resulted in published discrepancies in peer-reviewed literature (McGehee et 

al., 2021). This presents a challenge for studies of projected erosivity, since in addition to modeling and climate change 

uncertainty, there appear to be uncertainties in how to apply the original erosivity theory to various precipitation data types 

and their impacts on precipitation characteristics, especially intensity. Hopefully, with time, both of these sources of 

uncertainty will be reduced or eliminated. Until then, it is important for readers to take note of the methods utilized to arrive 

at various erosivity results. 
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Extreme value analysis of rainfall and erosivity 

 We used the annual maxima series (AMS) method for comparing the extreme rainfall events between projected future 

and historical climate simulations. A generalized extreme value (GEV) probability distribution was selected as suggested by 

Op de Hipt et al. (2018) and Mirhosseini et al. (2013) to fit the rainfall distribution of annual daily maximum values. This 

distribution combines three parameter distributions i.e., Gumbel, Frechet, and Weibull which is based on the extreme value 

theory  (Coles et al., 2001; Op de Hipt et al., 2018; Zhao et al., 2021). The fitted distribution was then used to obtain the 

annual daily maximum rainfall for the following return periods: 2-, 5-, 10-, 25-, and 50-years.  Additionally, the effects of 

extreme events on rainfall erosivity were analyzed using these annual maximum storm frequencies.  

 Moreover, the null hypothesis (H0: historical and future projected parameters come from the same distribution) was 

tested using either paired sample t-test, Wilcoxon sign test, or both (Op de Hipt et al., 2018). The test method was selected 

based on the characteristics of datasets according to the following rules. Both the paired sample t-test and the Wilcoxon sign 

test were used when the assumptions of normality were satisfied. Only the Wilcoxon sign test was used when the datasets 

were not normally distributed. The Shapiro-Wilk Test was used to determine normality for the selection of other test methods. 

Results and Discussion 

In this section, we report results obtained for observed (1970-2013) station data and five RCM-GCM products with both 

historical (1970-1999) and future (2030-2059) time periods for precipitation, rainfall erosivity, and erosivity density. The 

similarity of observed and historical climate results is discussed first. Then, results based on future projections are compared 

to historical simulations 

Precipitation 

 The observed average annual precipitation across all stations ranged from 835 to 1689 mm yr-1 with a mean of 1231 mm 

(Fig. 1). The spatial distribution of observed precipitation shows that greater rainfalls are received at Gulf-Atlantic coast and 

the Appalachian Mountain. Moreover, bias-corrected historical model simulations (1970-1999) of average annual 

precipitation were generally greater than observed precipitation patterns (Fig. 2). Almost all statistical measures of the 

ensemble-average historical simulations were more than 20% different from observed measures. The values for standard 

deviation, coefficient of variation, and maximum average annual precipitation were most different from observed measures 

(Table 3). 

The average annual precipitation for projected future simulations was significantly greater as compared to historical 

simulations (Fig. 2). All the models reject the null hypothesis of equal average annual precipitation between the historical 

and future period (p-value < 0.05) favoring the alternate hypothesis at 5% significance level using the Wilcoxon Rank test.  

Future (2030-2059) average annual precipitation ranged from 1641-1993 mm yr-1. The minimum and maximum average 

annual precipitation were 800 and 4015 mm yr-1, respectively. Outliers (as determined by 1.5 times the interquartile ranges 

(IQR) in both upper and lower quartile) in average annual precipitation were present in all climate models which showed a 

relatively high spatial variability of average annual precipitation for this region which tends to be less varied than in the 

western US. Among the five models in this study, HADGEM, MPIREG and MPIWRF resulted in greater mean, median, 

and variability (IQR and outliers) of average annual precipitation. The ensemble mean of projected future precipitation 

showed an increase in average annual precipitation of 14% as compared to the historical model ensemble mean of 1638 mm 

yr-1. This was as little as 7% and as great as 25% when considering individual stations in the Southeast US, so according to 

this analysis there is a substantial amount of spatial variability in projected changes to precipitation in this region. 
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Figure 2. Boxplots for observed, historical and future average annual precipitation over the southeastern United States. Each point represents an 

average annual precipitation for a single station. ‘H’ and ‘F’ at the end of model’s name indicate ‘historical’ and ‘future’ model simulations, 

respectively. Asterisk (*) indicates the average value.  Dotted line represents the mean value of observed average annual precipitation of 187 

stations from 1970-2013. 

Rainfall Erosivity 

The annual rainfall erosivity was calculated for 187 stations using the RUSLE2 energy equation without omitting any 

storms based on recommendations from McGehee and Srivastava (2018) and McGehee et al. (2022, 2021) over the Southeast 

United States (Table 4). These erosivities obtained using gauge data were further used to develop the spatial variation using 

kriging interpolation for ensemble model for the Southeast United States (Fig. 3). The erosivity patterns were found 

consistent from prior maps published in the agricultural handbooks, and spatial patterns were consistent in maps for 

observed, historical, and future periods. As expected, erosivity in the Gulf and Atlantic coastal areas and Appalachian 

Mountain regions was greater than in other inland regions. This shows a similar trend with the patterns of greater 

precipitation found in these regions (Fig. 1). The observed annual R-factor of 187 stations from 1970-2013 was obtained 

ranging from 1273 to 10587 MJ mm ha−1h−1yr−1(Table 4 and Fig. 4). In addition, the observed average annual R-factor 

has value of 4546 MJ mm ha−1h−1yr−1. As anticipated, the maximum annual R-factor was found in the eastern Louisiana 

which is in close proximity to the Gulf of Mexico. Whereas the minimum annual R-factor was found in the north boundary 

of Virginia, where the precipitation decreases further inland from the Gulf-Atlantic coast. These observed erosivity results 

are consistent with previous erosivity mapping studies (McGehee and Srivastava, 2018; McGehee et al., 2022) and were 

consistent with the erosivity benchmarking study by McGregor et al. (1995). 

Although, the minimum and maximum annual R-factor under five historical models from 1970-1999 were found in 

CANESM and MPIREG with 1501 and 27286 MJ mm ha−1h−1yr−1, respectively. This range was a much greater than 

observed, and was as much as 158% greater for some stations. The observed data was gap-filled, but they were not corrected 

for gauge undermeasurement bias. This bias can range from 0% to 10% for gauges installed above ground level in various 

wind conditions (Rodda, 1967; Rodda and Dixon, 2012). However, this potential downward bias is small compared to the 

differences obtained in this analysis. Similar to that of precipitation, reasons for these differences in erosivity, are discussed 

later in detail. 
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Figure 3. Observed (1970-2013) and ensemble mean annual rainfall erosivity (R-factor) over the southeastern United States using the RUSLE2 

energy equation (without data limitations) via WEPPCLIFF v1.6 for the historical (1970-1999) and projected future (2030-59) periods. 

 

 
Figure 4. Boxplots for observed, historical and future average annual erosivity over the southeastern United States. Asterisk (*) indicates the 

average value. Dotted line represents the mean value of observed average annual rainfall erosivity of 187 stations from 1970-2013. 

 

 In the case of future period of 2030-2059, average annual R-factor in five models ranged from 9655 (GFDL) to 12985 

(HADGEM) MJ mm ha−1h−1yr−1. In addition, the minimum and maximum annual R-factor were found under GFDL and 

MPIWRF with 2112 and 41256 MJ mm ha−1h−1yr−1, respectively. These results show that the average annual future 

projected rainfall erosivity are significantly greater than the historical period (1970-1999) of CANESM, HADGEM, GFDL, 

MPIREG, and MPIWRF models (Table 4). Among the various climate models, HADGEM MPIREG, and MPIWRF resulted 

in the greatest projected average annual rainfall erosivities consistent with each of these models projecting the greatest 

average annual precipitations as well (Table 3).  

Given that these simulated climate data were downscaled as part of standard NA-CORDEX procedures and further 
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downscaled by Takhellambam et al. (2022), we investigated whether these erosivities were being driven by a few high-

intensity events. The same erosivity analysis was performed excluding events with intensities greater than 401 mm hr-1 

which may be considered as outliers (Lewis et al., 2021). Unfortunately, the resulting erosivities were not significantly 

different from the previous datasets, which reduced average annual values by less than 1%. Provided the insignificant impact 

of these relatively extreme events, we retained all events in our various analyses. Therefore, the main reason for large 

differences and variation of erosivity among the different models was due to the large storm depths which may have been 

introduced by bias correction or downscaling. 

Table 3. Bias-corrected average annual precipitation statistics for 187 locations in the southeastern US for observed DSI-3260 gauge data (1970-

2013) and five RCM-GCM simulations of historical (1970-1999) and future (2030-2059) periods from NA-CORDEX.  

Statistic OBSERVED CANESM GFDL HADGEM MPIREG MPIWRF 

  H F H F H F H F H F 

Min. 835 711 800 811 909 839 895 919 1001 878 981 

Med. 1233 1427 1611 1583 1768 1627 1925 1688 1957 1563 1812 

Max. 1689 2156 2492 2933 3007 2859 4015 3419 3802 3143 3775 

Std.Dev. 160 300 332 340 320 347 530 379 403 382 487 

COV 0.13 0.20 0.20 0.21 0.18 0.21 0.27 0.22 0.20 0.23 0.25 

Mean 1231 1478 1641 1645 1795 1681 1993 1742 1992 1646 1912 

Obs.Abs.Diff. 0 247 410 414 564 450 762 511 761 414 681 

Obs.Rel.Diff. 0% 20% 33% 34% 46% 37% 62% 42% 62% 34% 55% 

Sim.Abs.Diff.   164  149  312  250  266 

Sim.Rel.Diff.   11%  9%  19%  14%  16% 

Note: Observed (Obs.) differences (Diff.) were calculated using the observed data mean as the baseline. Simulated or future (F) differences were calculated 
using the respective historical (H) model simulation mean as the baseline in Table 3-5. In addition, Abs.  and Rel. denote absolute and relative, respectively. 

 
Table 4. Average annual erosivity statistics for 187 locations in the southeastern US for observed DSI-3260 gauge data (1970-2013) and five RCM-

GCM simulations of historical (1970-1999) and future (2030-2059) periods from NA-CORDEX using R2 approach (without data limitations).  

Statistic OBSERVED CANESM GFDL HADGEM MPIREG MPIWRF 

  H F H F H F H F H F 

Min. 1273 1501 2186 1686 2112 1742 3174 1807 2277 1760 2419 

Med. 4043 5806 9116 6641 8546 6975 10950 6814 10995 6272 8969 

Max. 10587 15699 31408 22439 35333 19918 38125 27286 35753 23058 41256 

Std.Dev. 1860 2748 4742 3549 4283 3566 6596 4165 5788 3953 6412 

COV 0.41 0.42 0.48 0.45 0.44 0.44 0.51 0.51 0.47 0.51 0.57 

Mean 4546 6527 9971 7821 9655 8075 12985 8130 12366 7773 11206 

Obs.Abs.Diff. 0 1981 5425 3275 5108 3528 8438 3583 7820 3226 6660 

Obs.Rel.Diff. 0% 44% 119% 72% 112% 78% 186% 79% 172% 71% 146% 

Sim.Abs.Diff.  
 3444  1834  4910  4237  3433 

Sim.Rel.Diff.  
 53%  23%  61%  52%  44% 

 
Table 5. Average annual erosivity density statistics for 187 locations in the southeastern US for observed DSI-3260 gauge data (1970-2013) and five 

RCM-GCM simulations of historical (1970-1999) and future (2030-2059) periods from NA-CORDEX.  

Statistic OBSERVED CANESM GFDL HADGEM MPIREG MPIWRF 

  H F H F H F H F H F 

Min. 1.36 1.92 2.40 2.07 2.31 2.06 3.03 1.92 2.15 2.00 2.36 

Med. 3.35 4.14 5.58 4.43 4.95 4.46 5.97 4.15 5.66 4.26 5.19 

Max. 6.59 7.38 13.73 8.06 11.75 7.91 10.68 7.98 11.04 8.32 12.16 

Std.Dev. 1.14 0.98 1.83 1.15 1.41 1.14 1.51 1.34 1.76 1.22 1.63 

COV 0.32 0.23 0.31 0.25 0.27 0.25 0.24 0.30 0.29 0.27 0.29 

Mean 3.60 4.25 5.83 4.58 5.21 4.63 6.22 4.45 5.98 4.52 5.55 

Obs.Abs.Diff. 0.00 0.64 2.23 0.98 1.61 1.03 2.62 0.85 2.38 0.91 1.95 

Obs.Rel.Diff. 0% 18% 62% 27% 45% 29% 73% 24% 66% 25% 54% 

Sim.Abs.Diff.   1.58  0.63  1.59  1.53  1.04 

Sim.Rel.Diff.   37%  14%  34%  34%  23% 
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To quantify the projected change in average annual erosivity, we computed the relative change in erosivity with reference 

to the respective historical model as the baseline (Table 4). The results show that the projected relative change in the average 

annual R-factor ranged from 23% to 61% or an ensemble average of 47%. Results were consistent with previous studies 

which also showed a similar trend in increasing projected rainfall erosivity for the region (Biasutti and Seager, 2015; 

Hoomehr et al., 2016; Nearing, 2001). This analysis indicated that parts of the Southeast US with the greatest precipitation 

may see the greatest increase in R-factor (Fig. 3). These areas include the most southern part of Florida, the Appalachian 

region, and the Gulf-Atlantic coast. However, it is unclear how much of these potential increases were influenced by 

suboptimal bias correction or downscaling and is discussed in detail later. 

The effect of extreme rainfall events on R-factor was investigated using the annual maximum storm events from historical 

and future scenarios. Under all of the models, increase in the erosivity due to maximum storm events ranged from 30% to 

87% (Fig. 5). We further found that majority of the stations have significantly increased erosivity in the future projected 

scenarios as compared to the historical scenario. We found range of annual maximum erosivity ranges from -10% to 393%. 

One of the main reasons is due to the significant increase in the extreme rainfall intensity. 

 
Figure 5. The relative increase in the annual maximum erosivity due to the annual maximum storm event using five climate models under the 

RCP8.5 scenario. Asterisk symbols denote the mean value. 

Erosivity density  

 Erosivity density (ED) was calculated for each station with an observed average annual value of 3.6 MJ ha−1h−1yr−1 

(Table 5 and Fig. 6). The historical and future ensemble mean of annual ED was 4.49 and 5.76 MJ ha−1h−1yr−1, respectively 

(Table 5). In relative terms, ED based on historical simulations was 25% greater than observed ED, but this was smaller than 

differences for both precipitation and erosivity which were 33% and 69%, respectively. The results from both paired sample 

test and Wilcoxon rank test found rejecting the null hypothesis of equal erosivity density between the historical and future 

scenarios at a 5% significance level with p-value < 0.05. Therefore, projected ED was 29% significantly greater than 

historically simulated ED, which means that simulated changes due to climate were greater than differences between 

historical simulations and observed data.  

Similar to precipitation and erosivity analyses presented earlier, ED results could have been impacted by bias correction 

of downscaling methods. It is possible that impacts on the wettest stations’ precipitation and resulting erosivity calculations 

could result in biased ED calculations due to the nonlinear behavior of erosivity. Therefore, although ED accounts for 

differences in precipitation amount, it would not account for a potential nonlinear bias in wetter parts of the Southeast. These 

issues and the actions taken to account for them are discussed below. 
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Figure 6. Boxplots for observed, historical and future average annual erosivity density over the southeastern United States. Asterisk (*) indicates 

the mean value. Dotted line represents the mean value of observed average annual rainfall density of 187 stations from 1970-2013.   

Comparison of rainfall erosivity map among different studies 

The comparison of estimated future erosivity with previous studies is challenging. This is due to the different erosivity 

estimation methods and frameworks employed by various studies. In addition, the different time scales and uncertainty 

associated with different GCMs and downscaling methods further contributed to the differences in erosivity estimations 

(Panagos et al., 2022). The climate models are associated with different variations depending upon the type of model, e.g., 

initial and boundary conditions of the rainfall generation mechanism (Mirhosseini et al., 2013). However, we were able to 

compare the findings of a previous study by Panagos et al. (2022) which projected erosivity for 20 years (2041-2060) using 

30-min rainfall, estimated with HADGEM and MPIREG models under RCP8.5 scenario over the Southeast United States. 

We estimated the annual R-factor using 30-min (aggregated 15-min to 30-min rainfall) rainfall data with HADGEM and 

MPIREG model under the RCP8.5 scenario for the 20 years (2040-2059) to compare with Panagos et al. (2022). 

Using the HADGEM model (Fig. 7a), Panagos et al. (2022) reported that the annual R-factor from 2041-2060 varies from 

1501 to 11249  MJ mm ha−1h−1yr−1 with an average value of 7137 MJ mm ha−1h−1yr−1. In our study, the average annual 

R-factor showed 11190 MJ mm ha−1h−1yr−1 which is found greater by 56%. The change in annual R-factor based on our 

approach as compared to the Panagos et al. (20022) ranged from -67% to 1167% (Fig. 7b). Similarly, the MPIREG model 

showed a consistent result with relatively greater annual R-factor in the Gulf-Atlantic coastal regions as compared to the 

Panagos et al. (2022) (Fig. 7c and 7d). Under the MPIREG model, the reported range of annual R-factor by Panagos et al. 

(2022) was 1240 to 10851 MJ mm ha−1h−1yr−1 with an average value of 6705 MJ mm ha−1h−1yr−1 (Fig. 7b). Our study 

showed an average annual R-factor of 11917 MJ mm ha−1h−1yr−1. In addition, the relative change in annual R-factor under 

MPIREG model in our study shows in the range of -50% to 1234% as compared to that of Panagos et al. (2022). 

The negative and positive values (Fig. 7b and 7d) indicate a lower and greater values of annual R-factor in our study with 

reference to Panagos et al. (2022), respectively. In both models, the lowest and greatest change in annual R-factor was found 

in the northern and southern parts of the region, especially in the Gulf-Atlantic coastal region. However, the majority of the 

area showed relatively smaller change (up to 100%) with 0% indicating no change in the annual R-factor (Fig. 7b and 7d). 
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Figure 7. (a) and (c) Reported annual R-factor of Panagos et al. (2022) for HADGEM and MPIREG model under RCP8.5 scenario for 20 years 

(2041-2060) using Gaussian Process Regression. (b) and (d) relative change in annual R-factor (in percentage) in our study as compared to Panagos 

et al. (2022) under same HADGEM and MPIREG model for 20 years (2040-2059). Negative and positive value indicates the lower and greater 

annual R-factor in our study with reference to the Panagos et al. (2022), respectively. 

 

Discussion 

Future erosivity using high-temporal resolution rainfall datasets 

 The accurate estimation of rainfall erosivity requires high temporal resolution of rainfall datasets (Kim et al., 2020; 

McGehee and Srivastava, 2018; McGehee et al., 2022; Panagos et al., 2017). McGehee and Srivastava (2018) and McGregor 

et al. (1995) further encouraged to use “breakpoint” rainfall datasets for the estimation of erosivity. Therefore, our study 

used recently developed 15-min rainfall data from CMIP5 archive for future (2030-2059) erosivity estimation over the 

Southeast United States as a viable option to breakpoint datasets (McGehee and Srivastava, 2018; Takhellambam et al., 

2022). The differences in observed and historical simulated rainfall data could have arisen from slightly different time 

periods, model or downscaling limitations (e.g., course resolution, incomplete model science, model stochasticity), bias 

correction, observed data limitations (e.g., gaps or undermeasurement bias), or a combination of these. The impacts of these 

differences on this study are discussed later at Section 4.2 in detail. Although, the significant different between the historical 

and future rainfall datasets confirmed that by 2059, the region is expected to receive a significant number of intense rainfalls 

compared to the historical period of 1970-1999. This necessitates updating the estimation of future rainfall erosivity with 

high temporal resolution rainfall datasets (McGehee and Srivastava, 2018; Takhellambam et al., 2022). 

Previous studies used aggregated rainfall due to the unavailability of rainfall datasets (Biasutti and Seager, 2015; 
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Hoomehr et al., 2016; Nearing, 2001; Panagos et al., 2022). These rainfall datasets of lower temporal resolution lose the 

information of true rainfall characteristics. Takhellambam et al. (2022) showed that the downscaled 15-min rainfall datasets 

exhibit intensities that are greater than the 1-hourly scale but lower intensities than the observed 15-min rainfall. The rainfall 

intensity using aggregated rainfall datasets has often been underpredicted as compared to the 15-min datasets due to the 

smoothening of the intensities and eventually lower erosivity (McGehee and Srivastava, 2018; McGehee et al., 2022; Op de 

Hipt et al., 2018).  For example, the annual erosivity from Kim et al. (2020) was found to be under-predicted as compared 

to our study. This was expected because Kim et al. (2020) used 1-hour grided rainfall to estimate erosivity. Kim et al. (2020) 

reported a maximum value of 6000 MJ mm ha−1h−1yr−1 with a mean value of less than 2500 MJ mm ha−1h−1yr−1. 

Whereas, our study showed greater erosivity as compared to Kim et al. (2020) because we use 15-min rainfall datasets that 

give improved estimates of intensities as compared to the hourly rainfall. Hollinger et al. (2002), McGehee and Srivastava 

(2018), and USDA-ARS (2008) have suggested that we further increase erosivity obtained from the 15-min rainfall datasets 

by 4% to compensate for the dampening in intensity with the use of fixed-interval data (e.g., 15-min) as compared to 

breakpoint data.  

The future erosivity showed a large variation among the stations which can be seen from the boxplot (Fig. 4) and large 

standard deviation values in Table 4. These variations are owed to the large variation of rainfall due to the extreme rainfall 

intensities (Fig. 2). Furthermore, this can be confirmed by the higher ED (>3 MJ ha-1h-1) indicating that the precipitation has 

higher intensities for short-duration rainfall events (Chen et al., 2022; Panagos et al., 2015).  

     Each RCM-GCM shows different amounts of rainfall due to the different mechanisms of rainfall generation. 

Therefore, the ensemble model of five RCM-GCMs allows a representative estimation of future rainfall erosivity under the 

RCP8.5 scenario. This prevents the result from being influenced by a single model (Panagos et al., 2022). Moreover, kriging 

interpolation has enabled us to evaluate the spatial variation of erosivity using the rain-gauge approach (Kim et al., 2020; 

McGehee and Srivastava, 2018). The greater amount of annual R-factor in the Gulf-Atlantic coast owes to the greater 

precipitation because of warm air rising through sea breeze circulation. Precipitation decreases further inland and with 

increasing elevation and reduced moisture holding capacity of cooler air (Ingram et al., 2013). Greater precipitation was 

observed in the Appalachian Mountains due to orographic effects leading to greater erosivity in the region (Ingram et al., 

2013). 

A comparison of the findings of this study with those of Panagos et. al (2022) shows relatively similar trends of erosivity 

in majority parts of the region. However, there is a greater estimation of erosivity in this study, especially in the Gulf-Atlantic 

coastal region and southern Florida.  We anticipated a greater amount of erosivity as the region receives a greater amount of 

rainfall owing to the convective precipitation and tropical cyclones (Ingram et al., 2013; Knight and Davis, 2007). Panagos 

et al. (2022) used two stations in southern Florida to estimate erosivity, whereas our study used denser rain-gauge data of 16 

(Fig. 1), which could have resulted in erosivity differences. In addition, the greater amount of annual erosivity in our study, 

especially in the Gulf-Coastal area could be due to various reasons. For instance, Panagos et al. (2022) estimated the annual 

R-factor using a regression model, whereas our study estimated the same based on rainfall storm events. The true rainfall 

characteristics, such as intensity are lost while using the statistical relationships for the estimation of erosivity (Flanagan et 

al., 2020; Hollinger et al., 2002; McGehee et al., 2022). Our study also used in-situ rainfall datasets which are superior to 

the grid-based datasets of Panagos et al. (2022), especially with high-intensity rainfall events (Kim et al., 2020). In addition, 

differences in amounts of annual erosivity among the models is also caused due to different mechanisms of rainfall 

generation employed within each model (Mirhosseini et al., 2013).  

Regardless of the models and erosivity application methods used, the region is expected to have significantly higher 
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future annual erosivity than in the historical period. Furthermore, the region's elevated rainfall erosivity is caused by 

increased rainfall intensity (Swain and Hayhoe, 2015). However, there are some uncertainties associated with our study, 

which are discussed in detail below. 

Bias Correction and Downscaling Implications 

  Bias correction (BC) and downscaling (DS) were both potential sources of differences between observed and historical 

model simulation results. BC led to increasing average annual precipitation and intensities. While downscaling led to a 

decrease in moderate rainfall intensities. However, the downscaled results showed higher intensities than the hourly although 

lower than the observed 15-min precipitation (Takhellambam et al., 2022). In this study, we used relatively high-temporal 

resolution, 15-minute historical, and projected precipitation datasets generated from hourly NA-CORDEX products by 

Takhellambam et al. (2022). That study used quantile delta mapping (QDM) and a modified stochastic disaggregation 

method for bias correction and further downscaling of NA-CORDEX climate products, respectively. There were substantial 

differences between historical simulations and observations of precipitation, erosivity, and erosivity density (Table 3-5 and 

Fig. 2, 4, and 6). In comparison to the observed annual R-factor, the bias-corrected and non-bias-corrected annual R-factors 

had overestimated and underestimated values by 137% and -63%, respectively. It is currently unclear if there are other BC 

and DS methods that would result in better agreement with observed data especially with hourly scale since, to our 

knowledge, this has not been studied and published in the peer-reviewed literature for erosivity-based analyses. 

          The goal of this study was to quantify projected mid-century changes in erosivity for the Southeast US and to do this 

using an erosivity approach of RUSLE2 with recommendations of McGehee and Srivastava (2018) and McGehee et al. 

(2022, 2020) rather than an oversimplified erosivity extrapolation or aggregation method that assumes a relationship to 

historical precipitation characteristics. This approach to analyzing projected future erosivity is more rigorous than others, 

but there are potential sources of uncertainty in the estimated future rainfall erosivity, especially with the BC and DS. 

To assess the performance of bias correction, Takhellambam et al. (2022) evaluated average annual precipitation, wet-

hour frequencies, and precipitation intensities. Although the intensities and wet-hour frequencies were improved, the average 

annual precipitation was largely over-corrected or overpredicted. As expected, the uncorrected historical model simulations 

of average annual precipitation were greater than observed due to potential under-measurement biases in the observed data 

generated by adhesion, evaporation, wind drift, and splashing (Table 6) (Fischer et al., 2018) and model biases in the 

simulated data. However, bias correction of the simulated results worsened average annual precipitation differences which 

increased by 3.5% to 19.2% over what was already consistently greater than observed. This, along with the increased 

presence of more extreme event depths and characteristics, was largely responsible for the greater mean and maximum 

average annual erosivity values obtained in this study. The results showed that the extreme event depths significantly 

increased as the null hypothesis was rejected at the 5% significant level. The mean relative increase (in percentage) of annual 

daily maximum rainfall with reference to the historical model ranges from 8% to 46% (Table 7).  

Table 6. Percentage change in average annual precipitation after bias correction of climate models used in Takhellambam et al. (2022). Here, Raw 

and BC denotes the ratio of average annual precipitation of historical model and observed precipitation before and after bias correction. 

Model Raw BC Change (%) 

CANESM 1.09 1.26 15.56 

HADGEM 1.39 1.44 3.50 

GFDL 1.32 1.41 6.82 

MPIREG 1.34 1.50 11.74 

MPIWRF 1.19 1.42 19.23 
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Table 7.  Mean relative change (%) in future projected annual daily maximum rainfall as compared to the historical model with return period of 

2-, 5-, 10-, 25-, and 50- year. 

Model 2-Year 5-Year 10-Year 25-Year 

CANESM 17 32 38 43 

HADGEM 8 12 13 15 

GFDL 22 35 39 44 

MPIREG 21 27 29 31 

MPIWRF 19 24 26 28 

While the additional downscaling method used by Takhellambam et al. (2022) was another potential source of uncertainty 

in this analysis, it was unlikely that this method resulted in upward biases in this study’s analyses. We base this assessment 

on the results presented by Takhellambam et al. (2022) showing that there was a substantial downward bias in 15-minute 

intensities obtained from their DS method as compared to those from observed data. More specifically, the intensities were 

greater than those of simulated hourly data but less than those of observed 15-minute data.  According to Flanagan et al. 

(2020), this would result in a substantial underestimation (at least 9%) of erosivities that would be obtained from breakpoint 

precipitation gauges at the same location. We found the temporal downscaling using a modified stochastic approach has led 

to the underestimation of erosivity with an average value of 17%. This is because the downscaled rainfall characteristics do 

not adequately represent the observed rainfall characteristics (Takhellambam et al., 2022). Overall, these findings highlight 

the uncertainties of using climate models for high-resolution applications and their limitations in representing rainfall 

characteristics. In light of potential bias correction limitations, it may be of interest to evaluate downscaled, uncorrected 

climate simulations for analyses involving erosivity. The newest generation of climate model simulations, which are being 

conducted at increasingly finer spatial and temporal resolutions, may meaningfully reduce uncertainties from BC and DS 

methods in subsequent analyses. 

Conclusions 

 The most significant finding of this study is that precipitation, erosivity, and erosivity density in the Southeast US are 

projected to increase by 14%, 47%, and 29%, respectively, for 2030-2059 over the historical baseline (1970-1999). These 

results were obtained using an ensemble of five different climate models in NA-CORDEX which is an archive of CMIP5 

under the RCP 8.5 scenario. CMIP6 has better future climate projection with a narrower uncertainty band as compared to 

CMIP5. However, the temporal resolution of CMIP6 is 1 hour, which makes it unsuitable for the estimation of erosivity until 

it is downscaled to 15-min resolution. Therefore, in this study, we have used a recent 15-min precipitation dataset that was 

downscaled using the CMIP5 dataset.  

We used WEPPCLIFF version 1.6 and the RUSLE2 energy equation without data limitations for the estimation of rainfall 

erosivity and erosivity density. The future ensemble model showed an average annual R-factor of 11237±1299 

MJ mm ha−1h−1yr−1. The southern part of Florida, the Appalachian region, and the coastal region of the Gulf of Mexico 

were areas in the Southeast predicted to experience the greatest absolute increase in erosivity while areas with lower baseline 

erosivities were generally predicted to see the largest relative changes.  

Erosivity and erosivity density outcomes in this study were determined as opposed to aggregation or extrapolation 

methods which have become more common of late. This was an important decision of this study which can potentially 

reduce uncertainties associated with assuming historical precipitation characteristics for future periods. However, as 

discussed earlier, this decision also may have resulted in greater exposure to bias correction and downscaling method 

limitations. For instance, downscaling alone was determined to suppress erosivity estimates by 17% in an analysis using this 

study’s observed data. The bias correction of rainfall overestimated the annual R-factor with an average of 137%, whereas 
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non-bias corrected data underestimated the R-factor with an average of 62% when compared to the observed annual R-

factor. Average annual precipitation, erosivity, and erosivity densities obtained from bias-corrected and downscaled 

historical model simulations were consistently greater than observed values. Some degree of this should be expected on 

account of under-measurement biases associated with the observed data; however, the differences obtained in this study 

were much greater than can be attributed to that dynamic alone. Therefore, alternative bias correction and downscaling 

methods should be evaluated for potential use with subsequent erosivity analyses which may result in better agreement 

between historical simulations and observed metrics. 

Results of a similar study with different bias correction and/or downscaling methods could result in very different 

outcomes, especially since erosivity increases with total rainfall depth, rainfall intensity, or frequency of wet days. In 

addition, future research needs to be conducted with different biases and downscaling methods. Despite these uncertainties, 

this study affirms that projected climate change is likely to increase erosion in the Southeast US and that this increase will 

not be driven by changes in precipitation amounts alone but also due to changes in intensity and energy. 
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